
1

Using Polly to Optimise Julia Arrays in Loops
Jan Soendermann

Abstract—This report describes changes to the Polly loop
optimisation framework that make it possible to optimise loop
nests in the presence of bounds checks as generated by the
programming language Julia for all array accesses. I show
substantial and statistically significant speed ups when these
optimisations are applied to a gemm kernel.

Index Terms—Polly, Julia, LLVM, Runtime bounds checks,
Polyhedral optimisation

I. INTRODUCTION

IN this report, I describe modifications to the polyhedral
optimisation framework Polly that make it possible to use

Polly’s optimisation passes to optimise code written in the
Julia programming language. I begin with an introduction
to Julia, polyhedral optimisation, Polly and other necessary
background programs and concepts. I then describe the im-
plementation details of the changes I made to Polly. Finally,
I evaluate the performance impact of my modifications and
describe possible future work related to my project.

A. Julia

Julia is a programming language designed for scientific
computing. It is a dynamically typed language that JIT com-
piles code before it is executed using LLVM. Julia tries to
compete with programming environments and languages that
are currently used in scientific research such as MATLAB, R,
Stata and Python with packages like NumPy [1]. The develop-
ers of Julia claim that it can deliver performance equivalent to
that of C while being as expressive as Python1. Since its initial
release in 2012, it has generated considerable interest in the
scientific community and continues to be actively developed.

One noteworthy feature of Julia is that it prefaces all
array accesses by bounds checks that make sure no memory
addresses are illegally read or written to and thus prevent
crashes and memory corruption. A simple array access such as
A[n] generates code that first compares n to the length of the
array A, and only proceeds if n is within bounds. Otherwise it
throws an exception. This is, of course, also true for loops that
iterate over arrays. These bounds checks are then executed at
every iteration.

One other aspect of the Julia language that is relevant
for my project are its macros. Specifically, one macro was
made use of during the implementation and evaluation of
my changes: @inbounds. This macro disables bounds check
generation for the statements it is applied to. One possible use
of @inbounds is shown in Listing 12.

Jan Soendermann is an MPhil student in the Computer Laboratory at the
University of Cambridge

1See http://docs.julialang.org/en/release-0.3/manual/introduction/ for a
source to this claim

2Note that array indices to Julia arrays start at 1

@inbounds for i=1:n, j=1:m
A[i,j] = i+j

Listing 1. Using @inbounds with nested loops

The code shown in Listing 1 is compiled to LLVM IR
that is quite close to what two equivalent nested loops in
C would be compiled to and includes no bounds checks. It
also demonstrates how two nested for loops can be concisely
expressed in one line in Julia.

B. Regions and Dominance Trees

One of the fundamental concepts of the LLVM compiler is
that of a basic block which is a list of LLVM IR instructions
that execute sequentially and end in one of several possible
terminator instructions. This means that there is no way to
jump into the middle of a basic block—every execution starts
at the very first instruction. Equivalently, the only point at
which a basic block can be left is its terminator instruction. A
function is then a collection of such basic blocks connected by
conditional or unconditional branch instructions. This collec-
tion forms a graph G = (V,E), commonly called the control
flow graph (CFG), which has basic blocks as vertices V and
edges E as possible jumps. As an illustration, consider the
simple C function shown in Listing 2.

void initialise(int *A, int length) {
for (int i = 0; i < length; i++) {

if (i > length / 2) {
A[i] = i;

} else {
A[i] = -i;

}
}
return;

}

Listing 2. A simple C function

Figure 1 shows the control flow graph that this function
forms.

An execution of initialise is equivalent to a particular
walk of this control flow graph, starting at the first basic block
and ending at the basic block that has a return statement
as its terminator statement.

One concepts that follows naturally from the interpretation
of the basic blocks as a graph is that of a (simple) region.
A region is defined as a connected subgraph of the CFG that
is connected to the remaining part of the graph by only two
edges: an incoming and an outgoing one [2]. Figure 1 also
shows a region in our control flow graph highlighted in grey.
This region happens to form the body of the for loop in our
program.

It turns out that in practice, a slightly relaxed definition of
regions is more useful, as proper regions are quite rare in real

2

int i = 0start

if (i < length)

returnif (i > length / 2)

A[i] = i

A[i] = -i

i++

Region entry

Region exit

Fig. 1. The CFG with a region marked in grey

code. These “refined regions” [2] are defined as connected
subgraphs G′ = (V ′, E′) of the CFG G = (V,E) with two
special vertices, vin and vout, such that ∀(v, w) ∈ E, v ∈
V \ V ′ ∧ w ∈ V ′ =⇒ w = vin and ∀(v, w) ∈ E, v ∈
V ′ ∧ w ∈ V \ V ′ =⇒ v = vout. Informally, this means
that all incoming edges from the rest of the CFG go to vin
and all outgoing edges to the rest of the CFG go from vout.
Note that a refined region can be converted to a simple region
by inserting two empty blocks into the CFG that bundle the
incoming and outgoing edges.

To find the regions in a given CFG, LLVM makes use of
the related concept of dominator and post-dominator trees.
A dominator tree is a tree in which the basic blocks of the
function form the nodes. They are arranged according to the
following rule: for every block bc with a parent block in the
tree bp, every path from the entry node through the control
flow graph that passes through bc first passes through bp.

The dominator tree of our example program is shown in
Figure 2. Note how even though in the CFG, both the A[i]
= i and the A[i] = -i block have outgoing edges to the
i++ block, neither of them dominates the increment block.
Instead, it is a direct child of its grandparent in the graph, the
second if statement. This is precisely because when reaching
the increment, we could have arrived from either of the two
array assignments, which means that neither dominates their
common child in the graph.

int i = 0

if (i < length)

if (i > length / 2)

A[i] = i A[i] = -i i++

return

Fig. 2. The dominator tree of our example function

To construct the post-dominator tree of our program, we
first need to compute the inverse control flow graph. As the
name suggest, the inverse CFG is constructed from the CFG
by inverting all the edges in the graph. Additionally, input
blocks are turned into exit blocks and vice versa. In the
case of multiple exit nodes in the CFG, a new root note
is introduced to the post-dominator tree that dominates all
the new entry nodes that were exit nodes before. The post-
dominator tree is then constructed from the inverted CFG
in the same fashion the dominator tree is constructed from
the CFG. Although superficially simple concepts, I will return
to the details of dominator and post-dominator trees when I
describe the implementation details of my project.

The algorithm that builds dominator and post-dominator
trees is described in [3]. Both together are used to compute
the refined regions of the function. The algorithm that is used
for this is not documented publicly.

C. Polly

Polly is a loop optimisation framework for LLVM. It
represents loops nests as polyhedra and performs affine trans-
formations on these polyhedra to optimise the code that the
polyhedron represents. By doing so, it exposes opportunities
to parallelise and vectorise the program and improve data-
locality.

I will first describe the theoretical background of Polly
before explaining the specifics of Polly’s architecture.

1) Polyhedral Representation: To illustrate polyhedral rep-
resentation and manupulation, we will consider the loop nest
shown in Listing 33. This example is taken from [4] and
http://llvm.org/devmtg/2010-11/Grosser-Polly.pdf, which also
contains more details on polyhedral loop optimisation.

for i = 0 to n:
for j = 0 to i + 2:

A[i, j] = A[i-1, j] + A[i, j-1]

Listing 3. A nested loop example

This is a doubly nested loop and as such will be turned
into a 2-dimensional polyhedron. More generally, d nested
loops form a d-dimensional polyhedron. Every vertex of the

3I left out bounds checks to make the example more readable

3

polyhedron represents one iteration of the loop and every edge
represents a dependence relation. This is illustrated by Figure 3
which shows the polyhedral representation of the nested loops
shown in Listing 3 (the colours are only used to make the
transformation more clear and do not carry any meaning).

i

j

Fig. 3. The polyhedral representation of our nested loops

An incoming arrow to a vertex is to be interpreted as
a dependence on the loop iteration from which the arrow
originates. This means that the iteration at which the arrow
originates has to be executed first. The iteration with i =
1, j = 1 is dependent on the two iterations i = 0, j = 1
and i = 1, j = 0, which can easily be verified by looking at
the code in Listing 3.

If we want to use this polyhedral representation to paral-
lelise our loops, we can apply an affine transformation to turn
our polyhedron into the form shown in Figure 4. The reader
may be familiar with affine transformations from the field of
3D graphics where they are also used to shift, scale, rotate
and otherwise manipulate objects in space. In our particular
example, a shear transformation is used that shifts all points
along the x-axis.

The last step that remains is to translate the modified
polyhedron back to code. The result of this translation is shown
in Listing 4.
for t = 0 to 2*n + 2:

parallel_for p = max(0, t - n) to
min(t, t / 2 + 1):

A[t-p, p] = A[t-p-1, p] + A[t-p, p-1]

Listing 4. A nested loop example

Looking at Figure 4, we see that iterations with t = v
exclusively depend on iterations with t < v. Therefore, all
the iterations with an equal t can happen in parallel, as they
do not depend on each other. The index variable t can be
though of as the time and p as the different parallel iterations
of the loop body.

t

p

Fig. 4. The transformed polyhedral representation of our nested loops

2) Architecture: Executing Polly on a function involves the
following three steps. First, the parts of the function that can be
optimised by Polly are detected. They are called Static Control
Parts (SCoPs) and are explained in detail below. Second,
these SCoPs are translated into a polyhedral representation and
dependency analysis is performed on these polyhedra. Finally,
the transformed polyhedra are translated back to LLVM IR and
optimisation opportunities exposed by the transformations to
parallelise or vectorise the code using OpenMP and SIMD
instructions are taken. These three steps make up the front,
middle and back end of Polly.

SCoPs, that make up an essential part of the Polly archi-
tecture, are pieces of our program in which we can statically,
i.e. at compile time, determine all control flow and memory
accesses [2]. They are regions in the control flow graph that
fulfil a number of requirements that go beyond those of a
simple or refined region to ensure this static control property.

These additional requirements are as follows4:
1) All loop bounds are affine linear functions
2) Only affine linear expressions can be compared in con-

ditions
3) Flow control statements are perfectly nested, i.e. there

are no break, continue or goto statements in the
code

4) All function calls are side effect free
The basic blocks in a region that forms a SCoP are called

SCoP statements. Every such statement has a domain associ-
ated with it that describes the iterations, i.e. the configurations
of iteration variables for which the statement is executed.

The last important concept related to static control parts is
that of assumptions. As the name suggests, these are conditions
that will be assumed to hold during the execution of the SCoP.
Sometimes, these assumptions will be statically provable. As
an example of this, consider the Julia code in Listing 5.
Because we know statically that i will run from 1 to the size
of array A, the bounds check that Julia will generate for the
array access can be removed completely during compilation
when Polly is run.

4See https://llvm.org/svn/llvm-project/polly/trunk/include/polly/ScopDetection.h
for a source

4

function init1(A)
n = size(A)
for i=1:n

A[i] = i
end

end

Listing 5. There will never be an out of bounds error in this code

Listing 6 shows a slight modification of Listing 5 for which
this is no longer true. Here, the maximum value of the loop
index is taken from a parameter to this function. This means
that we can not determine at compile time whether n will be
greater than size(A).

function init2(A, n)
for i=1:n

A[i] = i
end

end

Listing 6. There might be an out of bounds error when calling this code

In cases like these, Polly generates runtime checks that take
the following form:

if (assumptions hold)
execute_optimised_version();

else
execute_original_code();

Listing 7. Check assumptions at runtime

I will show an example of these checks in the Evaluation
chapter.

II. IMPLEMENTATION

As described in the introduction, the goal of my project
was to move Julia’s array bounds checks out of loops. To
understand what was necessary to achieve this, it is helpful to
first look at the LLVM IR of the basic blocks that are executed
when these bounds checks fail. Listing 9 shows this code.

oob:
%e = load %jl_value_t** @jl_bounds_exception
call void @jl_throw_with_superfluous_argument(

%jl_value_t* %e, i32 5)
unreachable

Listing 9. Out of bounds error handling in LLVM IR

The second line of this code throws a Julia exception by
calling the jl_throw_with_superfluous_argument
function with the type of the exception and the line number in
the Julia code where it occurred. Clearly, the program is not
going to return from this call: either the exception is caught
somewhere higher up the call stack and execution proceeds
there, or the program crashes and the error is displayed to
the user. To make this explicit to the optimiser, the oob
basic block ends in an unreachable instruction, an LLVM
IR instruction that is used for this specific circumstance: a
function that does not return.

Because SCoPs are detected based on regions, the first
necessary change was to make the LLVM pass that builds
regions from the control flow graph, RegionInfo, work on
CFGs that contain unreachable instructions. It is not
immediately clear how to interpret unreachables in the

context of CFGs. They could be interpreted as terminator
statements but for the region building algorithm to function
properly, it requires them to be considered dead ends. They
are not exit nodes in the CFG and therefore do not turn into
entry nodes in the inverted CFG.

Figure 5 shows the control flow graph and the regions
detected in that graph for a function that contains an
unreachable statement at the end of basic block _115.
Notice how this block forms a region with the block that
branches to it, the one coloured in red.

Region Graph for ’initArray’ function

_0

_3

_7 _23

_11 _14

_20

Fig. 5. The regions in a function with an unreachable statement

The next modification I made was to the SCoP detec-
tion part of Polly. As part of SCoP detection, the func-
tion ScopDetection::allBlocksValid is called. This
functions iterates over the blocks in a potential region and over
the instructions in these blocks to check for the existence of
instructions that violate the conditions of a SCoP as described
in the introduction. We skip these checks, because evetually,
these blocks will be moved outside of the loop or removed
altogether. Listing 10 shows how they are skipped.

for (const BasicBlock *BB : R.blocks()) {
const TerminatorInst *TI =

BB->getTerminator();
if (dyn_cast<UnreachableInst>(TI))

continue;

... check for SCoP conditions ...
}

Listing 10. Skipping checks for blocks with unreachable

5This diagram was generated by running $ opt
-view-regions-only <file.ll>

5

void ScopStmt::deriveAssumptionsFromUnreachable() {
auto ExecutionDomain = this->getDomain();
auto ParameterValuesForWhichStmtIsExecuted = isl_set_params(ExecutionDomain);
auto ParameterValuesForWhichStmtIsNotExecuted =

isl_set_complement(ParameterValuesForWhichStmtIsExecuted);
this->getParent()->addAssumption(ParameterValuesForWhichStmtIsNotExecuted);

}

Listing 8. Deriving assumptions from unreachable statements

The last main modification that was necessary was to
update assumption derivation to take unreachable ba-
sic blocks into account. To achieve this, the function
ScopStmt::deriveAssumptions was extended by a
call to the function shown in Listing 8 for ScopStmts that
represent basic blocks that end in unreachable. This func-
tion looks at the parameters of the SCoP, which are variables
that come from the context that the loop nest is in and do not
change throughout the execution of the SCoP. Specifically, it
considers those potential values of these parameters for which
the SCoP statement is not executed. My new function adds an
assumption to its parent SCoP that the parameters will take
these values.

This is equivalent to assuming that there will be no out of
bounds error. This assumption is then verified before the loop
nest at runtime. In some cases, it can even be statically proven
that out of bounds error can never occur. In these cases, the
checks will be removed completely.

With these changes, there is one problem that remains to be
solved before Julia can automatically optimise its loops using
Polly entirely automatically. For a program of the form shown
in Listing 11, Julia generates bounds checks of the form 0 <=
f1(i) * m + f2(i) < n*m. This, however, violates re-
quirement 2 of a SCoP as described in the introduction. Polly
can only handle bounds checks that compare each dimension
separately. In our example, they would have to look like this:
0 <= f(i) < n && 0 <= f2(i) < m.

A = zeros(Int32, n, m)

for i := 1:x
A[f1(i), f2(i)] = i

end

Listing 11. Multidimensional arrays in a Julia loop

To solve this problem, Julia will have to be edited to
generate checks that Polly can understand. I considered this to
be outside of the scope of my project and discuss this further
in the Future Work section.

III. EVALUATION

I evaluate the results of my project in two stages. First
I show that my changes worked and that Polly can now
handle bounds checks that end in unreachables. Second,
I show the speed ups that these changes will bring once they
are incorporated into Polly and Julia is adapted to solve the
problem mentioned above.

To test my changes, I wrote a short C program that computes
a gemm kernel and performs the operation C = AB+C where

A, B and C are matrices. Such computations are common
in scientific code and therefore make for a good test case.
The main part of this program is shown in Listing 12 and
includes array bounds checks in the loop nest that conform to
the format Polly expects. Like the oob block shown in Listing
9, the oob() function in my code ends in an unreachable in-
struction, generated by the __builtin_unreachable()
call.
void oob() __attribute__((noreturn));

void gemm(long n, long m, long o,
float A[n][o], float B[m][o],
float C[n][m], long n2, long m2,
long o2) {

for (long i = 0; i < n2; i++) {
for (long j = 0; j < m2; j++) {

for (long k = 0; k < o2; k++) {
if (i < 0)

oob();
if (i >= n)

oob();
if (j < 0)

oob();
if (j >= m)

oob();
if (k < 0)

oob();
if (k >= o)

oob();

C[i][j] += A[i][k] * B[k][j];
}

}
}

}

void oob() {
printf("Error\n");
exit(-1);

__builtin_unreachable();
}

Listing 12. C reconstruction of proposed Julia output

Note how the parameters to gemm include the array di-
mensions twice: once in parameters n, m and o and once in
n2, m2 and o2. The first set is used to inform the compiler
of the dimensions of the multidimensional arrays that contain
the matrices. The second set is used as maximum values for
our loop iteration variables. This is done to make our test case
more interesting because it means that Polly can not simply
statically infer that no out of bounds error ever occurs.

Using opt to output a high level representation generated
by Polly when run on this C code gives the result shown in

6

Listing 13, again slightly edited for readability. As the loop
variables start at 0 and only get increased, Polly can statically
remove the checks that ensure that they do not have values
below zero (if (i < 0) oob(); etc.). For the remaining
bounds checks that protect against the loop variables running
past the end of the arrays, one run time check outside of
the loop nest was added. Recall that n is one of the array
dimensions that the compiler knows, due to the initialisation
of the arrays in the parameter list and that n2 is the maximum
value of loop variable i that is used to index the arrays. The
check therefore ensures that this upper bound is always lower
than the actual size of the array.

if (n >= n2 && m >= m2 && o >= o2 ? 1 : 0)
for (int c0 = 0; c0 < n2; c0 += 1)

for (int c1 = 0; c1 < m2; c1 += 1)
for (int c2 = 0; c2 < o2; c2 += 1)

Stmt_if_end22(c0, c1, c2);
else

{ /* original code */ }

Listing 13. Polly moves bounds checks outside the loop nest

To evaluate the performance gain that can be expected from
my changes, I reimplemented a gemm kernel in Julia, adding
the @inbounds macro to disable runtime checks. To ensure
that the optimisations ran correctly, I initialised matrices A
and B with random values using a fixed random seed. Matrix
C was initialised with zeroes. After running, the program
dumped matrix C into a file, producing the same result in
all runs. I used the Julia time function to measure the time
the gemm function took to run.

Running this code ten times, five each for the unoptimised
and the Polly-optimised version, produced the result shown
in Figure 6. The optimisation produce a highly statistically
significant (p < 0.001) speed up of roughly 8x. For this test, I
used Julia commit d137a9f4a0, commit c41acffe22 of LLVM
and commit 8fcf499090 of Polly6.

IV. CONCLUSION

My changes enable Polly to successfully optimise loop
nests in the presence of bounds checks. Although there is
still some minor work left to make Julia and Polly work
together seamlessly, it can already be seen that this has the
potential of bringing substantial speed ups of programs that
spend much time in nested loops. As Julia is a scientific
programming language and such loop nests are common in
scientific code, I expect the performance gains in real world
code to be considerable.

A. Future Work

The next step is to modify Julia to generate bounds checks
for multidimensional arrays that Polly can understand. Once
this has been done, the changes could be merged upstream.
On the julia-dev mailing list, Tim Holy has suggested adding
a @polly macro that could be used to switch on Polly
optimisations7. If there is a reason to retain the current form

6These all refer to the program’s git repositories
7https://groups.google.com/d/msg/julia-dev/lNPeqD6uZrQ/qmSB4I9Lgs4J

Running time for Julia gemm

T
im

e
in

 s
ec

on
ds

Unoptimised Optimised

0
5

10
15

20
25

30
Fig. 6. Running time for the unoptimised and optimised versions

of the bounds checks, this macro could also be used to switch
on generation of Polly-friendly bounds checks and default to
the current form otherwise.

Building on that, new heuristics could be added to Polly
specifically targeting common Julia patterns.

V. ACKNOWLEDGEMENTS

I am very grateful to Tobias Großer for guiding me through
this project and for always being patient and helpful when I
was stuck and had questions.

I would also like to thank David Chisnall for teaching
me about state-of-the-art compiler design and for getting me
interested in polyhedral optimisations.

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” CoRR, vol. abs/1411.1607, 2014.
[Online]. Available: http://arxiv.org/abs/1411.1607

[2] T. Grosser, “Enabling polyhedral optimizations in llvm,” Ph.D. disserta-
tion, Universität Passau, 2011.

[3] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in a
flowgraph,” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp. 121–141,
Jan. 1979. [Online]. Available: http://doi.acm.org/10.1145/357062.357071

[4] M. Griebl and C. Lengauer, “The loop parallelizer loopo,” in Proc.
Sixth Workshop on Compilers for Parallel Computers, volume 21 of
Konferenzen des Forschungszentrums Jülich. Forschungszentrum, 1996,
pp. 311–320.

